
OpenL Tablets and Activiti Integration Guide

Preface
This preface is an introduction to the OpenL Tablets and Activiti Integration Guide. This guide contains
information about OpenL Tablets integration with Activiti. Starting with OpenL Tablets 5.17.0, some modules
were added for Activiti integration proposes.

The following topics are included in this preface:

Audience
Related Information

Audience

This guide is mainly targeted at software developers who set up usage of the OpenL Tablets rules in Activiti
process definitions.

Related Information

The following table lists sources of information related to contents of this guide:

Title Description

http://activiti.org/ Activiti official website.

https://openl-tablets.org/ OpenL Tablets open source project website.

Maven Dependencies
The following table describes modules included into OpenL Tablets for Activiti integration:

Module Description

org.openl.rules:org.openl.rules.activiti
Contains integration features that do
not use the OpenL Rule Service
functionality.

org.openl.rules:org.openl.rules.ruleservice.activiti
Contains integration features that use
OpenL Rule Service functionality.

Example:

<dependency>
 <groupId>org.openl.rules</groupId>
 <artifactId>org.openl.rules.activiti</artifactId>
 <version>X.X.X</version>
</dependency>
<dependency>

1 / 8

http://activiti.org/
https://openl-tablets.org/

 <groupId>org.openl.rules</groupId>
 <artifactId>org.openl.rules.ruleservice.activiti</artifactId>
 <version>X.X.X</version>
</dependency>

Note: Advised approach is to use OpenL Rule Service functionality. Only one of the dependencies above
needs to be added to a project depending on a chosen approach.

OpenL Rule Service Integration
This section describes how to use OpenL Rule Service integration via Spring Integration feature in Activiti and
it uses full OpenL Rule Service functionality. That is, this type of integration does not use resources added into
Activiti deployment as a rule project; instead, it uses OpenL Tablets repository as the OpenL Tablets rule
projects storage.

To support this functionality in Activiti process definitions, add the openl-ruleservice-activiti-
beans.xml bean configuration into application Spring context definition.

An example is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">
 <bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.StandaloneInMemProcessEngineConfiguration">
 </bean>

 <bean id="processEngine"
class="org.activiti.spring.ProcessEngineFactoryBean">
 <property name="processEngineConfiguration"
ref="processEngineConfiguration" />
 </bean>
 <import resource="classpath:openl-ruleservice-activiti-beans.xml" />
</beans>

This configuration contains a bean named openLEngine that can be used in process definitions as a part of
Spring Integration feature in Activiti. The bean contains a method with following signature:

public ResultValue execute(String serviceName, String methodName, Object... args)
throws Exception;

execute method argument name Description

2 / 8

execute method argument name Description

serviceName OpenL Tablets service name in a repository.

methodName Rule method name from a resource.

args Rule method arguments.

This method returns the org.openl.rules.activiti.spring.result.ResultValue class designed to
simplify usage of invocation result from UEL in Activiti process definition. For more information on using this
class, see Spring Integration.

An example of using the openLRules bean is as follows:

<sequenceFlow id='flow3' sourceRef='theStart' targetRef='theTask2'>
 <conditionExpression xsi:type="tFormalExpression">
 <![CDATA[${openLEngine.execute('datasource_Tutorial1',
'DriverPremium1',
 driverAge, driverMaritalStatus).toDouble() <= 400}]]>
 </conditionExpression>
</sequenceFlow>

Or:

<serviceTask id="task"
activiti:expression="${openLEngine.execute('datasource_Tutorial1',
'DriverPremium1', driverAge, driverMaritalStatus).asDouble().set(execution,
'resultVariable')}" />

Deploying OpenL Tablets Rules in Activiti
To use OpenL Tablets rules in Activiti process definition without OpenL Rule Service, add the rules into Activiti
deployment as a resource.

An example is as follows:

processEngine.getRepositoryService()
 .createDeployment()
 .addClasspathResource("activiti-definition.bpmn20.xml")
 .addClasspathResource("openl-rules.xls")
 .deploy();

The XLS, XLSX, and ZIP resource formats are supported for the OpenL Tablets rules. If a ZIP archive is used as
the OpenL Tablets rules resource, the content of this archive is used as an OpenL Tablets project. In this case,
the rules.xml configuration file is supported if it exists in the root of the archive folder.

Note: The current implementation of Activiti integration does not support OpenL project dependencies.

3 / 8

Using OpenL Tablets Rules
The org.openl.rules.activiti.MethodInvokeResourceServiceTask class added into the Activiti
integration module implements the JavaDelegate interface from the Activiti framework and can be used as
the Activiti service task. This class is designed to invoke the OpenL Tablets rule and stores result as an
execution variable in Activiti execution context. To use this implementation, define several extension elements
for a service task. For more information on a service task, see Activiti documentation.

MethodInvokeResourceTask
supported elements

Required Description

resource Yes Deployment resource name for OpenL Tablets rules.

method Yes Method with its name to be used for rule execution.

resultVariable Yes
Result variable name. The rule execution result is stored in
the execution context with this defined name.

provideRuntimeContext No Support runtime context for OpenL Tablets rules.

module No

Module from a project.
This parameter can be used in multi-module projects to
use the single module compilation approach.
For more information on single module compilation
approach, see OpenL Tablets documentation.

If the method requires parameters, the system searches for parameters in Activiti execution variables with the
same name as a parameter name used in OpenL Tablets rules. The MethodInvokeResourceServiceTask
implementation tries to apply OpenL Tablets casts for execution context variables if the variable with required
name is found but the variable type differs from the required OpenL rules parameter type. If variable cannot
be found in context, the null value is used as a rule parameter.

Note: MethodInvokeResourceServiceTask cannot be used if the OpenL Tablets resource contains more
than one rule method with the same method name (overloaded rules).

Example:

<serviceTask id="openLServiceTask" name="OpenL Service Task"
activiti:class="org.openl.rules.activiti.MethodInvokeResourceServiceTask">
 <extensionElements>
 <activiti:field name="resource">
 <activiti:string>openl-
rules.xls</activiti:string>
 </activiti:field>
 <activiti:field name="method">

<activiti:string>rule1</activiti:string>
 </activiti:field>
 <activiti:field name="resultVariable">

<activiti:string>resultVariable</activiti:string>

4 / 8

 </activiti:field>
 </extensionElements>
</serviceTask>

If OpenL Tablets rules need to be used with the runtime context support feature,
MethodInvokeResourceServiceTask supports using Activiti variables as runtime context properties.

To invoke the overloaded rules method or add additional logic to a service task, create service task
implementation using org.openl.rules.activiti.AbstractOpenLResourceServiceTask designed for
this purpose. The following table describes methods of this class that can be used in the extended class:

AbstractOpenLResourceServiceTask
method

Description

isProvideRuntimeContext
Returns true value if runtime context is supported for the
OpenL Tablets resource.

getSimpleProjectEngineFactory Returns factory used for OpenL Tablets resource compilation.

getInstance Returns the OpenL instance object.

getInterfaceClass Returns the OpenL Tablets instance interface class.

Example:

public class SimpleOpenLServiceTask extends
AbstractOpenLResourceServiceTask<Object> {
 @Override
 public void execute(DelegateExecution execution) throws Exception {
 String driverAge = (String) execution.getVariable("driverAge");
 String driverMatrialStatus = (String)
execution.getVariable("driverMaritalStatus");
 Object instance = getInstance(execution);

 Class<?> clazz =
getSimpleProjectEngineFactory(execution).getInterfaceClass();
 Method method = clazz.getMethod("DriverPremium1", String.class,
String.class);

 DoubleValue result = (DoubleValue) method.invoke(instance, new Object[] {
driverAge, driverMatrialStatus });

 execution.setVariable("resultVariable", result.doubleValue());
 }
}

If a static interface exists for OpenL Tablets rules, this implementation can be rewritten with generic types as
follows:

5 / 8

public interface RulesInterface {
 DoubleValue DriverPremium1(String driverAge, String driverMaritalStatus);
}

public class SimpleOpenLServiceTask extends
AbstractOpenLResourceServiceTask<RulesInterface> {

 @Override
 public void execute(DelegateExecution execution) throws Exception {
 String driverAge = (String) execution.getVariable("driverAge");

 String driverMatrialStatus = (String)
execution.getVariable("driverMaritalStatus");
 RulesInterface instance = getInstance(execution);

 DoubleValue result = instance.DriverPremium1(driverAge,
driverMatrialStatus);

 execution.setVariable("resultVariable", result);
 }
}

Spring Integration
This section describes how to use OpenL Tablets rules via Spring Integration feature in Activiti. Activiti Spring
Integration feature enables using beans from Spring context in process definitions via Unified Expression
Language (UEL).

To enable OpenL Tablets rules support in Activiti process definitions, add the openl-activiti-beans.xml
bean configuration into application Spring context definition.

Spring configuration example is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.StandaloneInMemProcessEngineConfiguration">
 <property name="eventListeners">
 <list>
 <bean
class="org.openl.rules.activiti.spring.OpenLResourcesHandleListener" />
 </list>
 </property>
 </bean>
 <bean id="processEngine"
class="org.activiti.spring.ProcessEngineFactoryBean">

6 / 8

 <property name="processEngineConfiguration"
ref="processEngineConfiguration" />
 </bean>
 <import resource="classpath:openl-activiti-beans.xml" />
</beans>

This bean configuration contains a bean named openLRules. This bean can be used in process definitions as
a part of Spring Integration feature in Activiti. The bean contains a method with following signature:

public ResultValue execute(DelegateExecution execution, String resource, String
methodName,
 Object... args) throws Exception;

execute method argument name Description

execution Activiti execution.

resource Name of the OpenL Tablets resource in deployment.

methodName Rule method name from a resource.

args Rule method arguments.

This method returns org.openl.rules.activiti.spring.result.ResultValue class designed to simplify
usage of invocation result from UEL in Activiti process definition. The result easy can be casted to different
types by using the following methods:

Method name for casting invocation result to different types Description

asByte(), asInt(), asLong(), asDouble(), asFloat(), asString(), asBoolean()

Converts ResultValue to the new
ResultValue that stores result as
Byte, Integer, Long, Float, Double,
String, or Boolean value.

toByte(), toInt(), toLong(), toDouble(), toFloat(), toString(), toBoolean()
Converts ResultValue to Byte,
Integer, Long, Float, Double,
String, or Boolean value.

value() Returns the result value.

set(DelegateExecution, String variableName), set(DelegateExecution,
String variableName, boolean fetchAllVariables),
setLocal(DelegateExecution, String variableName),
setLocal(DelegateExecution, String variableName, boolean
fetchAllVariables),

Sets the result value into
execution as a defined variable.

If OpenL Tablets rules are compiled with runtime context support feature, pass runtime context as the first
method argument. To build runtime context automatically from Activiti context variables with the same names
as runtime context properties, use the following method of the openLRules bean:

7 / 8

protected IRulesRuntimeContext buildRuntimeContext(DelegateExecution execution);

An example of using the openLRules bean is as follows:

<sequenceFlow id='flow2' sourceRef='theStart' targetRef='theTask1'>
 <conditionExpression xsi:type="tFormalExpression">
 <![CDATA[${openLRules.execute(execution, 'openl-rules.xls',
'DriverPremium1',
 driverAge, driverMaritalStatus).toDouble() > 400}]]>
 </conditionExpression>
</sequenceFlow>

Alternatively, use the openLRules bean as follows:

<serviceTask id="task" activiti:expression="${openLRules.execute(execution,
'openl-rules.xls', 'DriverPremium1', driverAge,
driverMaritalStatus).asDouble().set(execution, 'resultVariable')}" />

Build runtime context usage example is as follows:

<serviceTask id="task" activiti:expression="${openLRules.execute(execution,
'openl-rules.xls', 'DriverPremium1', openLRules.buildRuntimeContext(execution),
driverAge, driverMaritalStatus).asDouble().set(execution, 'resultVariable')}" />

Release 5.27
OpenL Tablets Documentation is licensed under the Creative Commons Attribution 3.0
United States License.

8 / 8

